Reciprocal Lattice and X-ray Diffraction
Ghi

A diffraction pattern of a crystal is a map of the reciprocal
lattice of the crystal.



Reciprocal Lattice

e The reciprocal lattice is defined as the set of all wave
vectors K’s that yield plane waves with the periodicity of a
given Bravais lattice.

e Let R denotes a Bravais lattice point; consider a plane wave
exp(ikr). This will have the periodicity of the lattice if the
wave vector k=G, such that

exp(iG:(r+R)=exp(iGr)
for any r and all R Bravais lattice.
e Thus the reciprocal lattice vectors G must satisfy
exp(iG'R)=1



Reciprocal Lattice Vector in 1D

In one dimension with a period of a in x, we have

n(x+a) = n(x)
expand n(x) in Fourier series of sines and cosines:

=n,+ E » cos(2mpa/a) + S, sin(2mpx/a)]

p >(}

In more compact form
:Z n, exp(i2mpx/a)
P

To ensure that n(x) is a real function, we

require ¥ —
nt,=n,



]

Fourier coefficient: np=a“1f dx n(x) exp(—i2mpx/a)
0

Since  p(y) :z n, exp(i2mpx/a)
p

n,=a" > ny j dx expli2m(p’ — p)x/a]
p' )

(

If p* # p the value of the integral is

a (eiﬂw(p’“p) _1) = ()

i2m(p’ — p)
Ifp’=p, n,=aln,a=n,

We say that 2.tp/a is a point in the reciprocal lattice or Fourier space
of the crystal. The reciprocal lattice points tell us the allowed terms
in the Fourier series, which is consistent with the periodicity of the
crystal.



Reciprocal Lattice Vectors in 3D

If a), a,, ay are primitive vectors of the crystal lattice, then by, by, b, are

primitive vectors of the reciprocal lattice.

Here

b;-a; =2m8; whered; =1 if-z' = j and b =0 iti #j

Points in the 1"eciljr'oczil lattice are mapped by the set of vectors
C - 'Ulbl + Ug_bg + 'Ugb:; )

where v, vo, v; are integers. A vector G of this form is a reciprocal lattice vector.



Brillouin Zone

A Brillouin zone is defined as a Wigner-Seitz cell in

e
reciprocal lattice.
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Brillouin Zone in 1D and 2D

The central cell in the reciprocal lattice is of special
importance in the theory of solids, and we call it the first
Brillouin zone. The first Brillouin zone is the smallest volume
entirely enclosed by planes that are the perpendicular bi-
sectors of the reciprocal lattice vectors drawn from the origin.




All Brillouin Zones: Square Lattice




Reciprocal Lattice to bcc Lattice
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An fcc lattice is the reciprocal lattice of the bcc lattice.

Figure 13 First Brillouin zone of the body-
centered cubic lattice. The figure is a regular

Figure 12 Primitive basis vectors of the body-centered
rhombic dodecahedron.

cubic lattice



Reciprocal Lattice to fcc Lattice

a=2a(y+2) ; aﬁ%a(iﬁ); a,=Lak+§)
b, = 2@/a)(—x+y + Z) ; = 2m/a)x —y+ Z) ;

”~

b, = Qm/a)x +y—z) .
A bcc lattice is the reciprocal lattice of the fcc lattice.
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Figure 14 Primitive basis vectors of the Figure 15  Brillouin zones of
face-centered cubic lattice. the face-centered cubic lattice.



First Brillouin Zone for fcc




First Brillouin Zone for bcc




Wavelength vs particle energy

de Broglie wavelength A = h/P = h/[ZmE]VZ
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X-ray Diffraction

Typical interatomic distances in solid are of the order of
an angstrom. Thus the typical wavelength of an
electromagnetic probe of such distances must be of the
order of an angstrom.

E=hel A A (A)=12.4/F (keV)

Upon substituting this value for the wavelength into the
energy equation, we find that E is of the order of 12
thousand eV, which is a typical X-ray energy. Thus X-ray
diffraction of crystals is a standard probe.



Bragg Diffraction: Bragg’s Law

Bragg's Law

Incident
plane wave

!
-
a7 -3

2d sin B

Constructive interference
when

® o e o o o nA = 2d sin 6
Bragg’s Law

Planes with Miller index (hkl) has the interplane distance d,;:

dp = a/(h2+k?+7)1/2 nA = 2d,,, sinB,



Condition for Interferences

A
APy
A + —

Constructive interference Destructive interference




Diffraction Conditions

Every crystal structure has two lattices associated with it, the crystal lattice
and the reciprocal lattice. A diffraction pattern of a crystal is

a map of the reciprocal lattice of the crystal.

Theorem: The set of reciprocal lattice vectors Gs determines
the possible x-ray reflections.



Scattering Amplitude of X-Ray Diffraction

F=[dVna(r)explilk — k') -x]=] dV n(r) exp(—iAk - 1)

. Crystal specimen

\ 7~ ™ / Outgoing beam
Incident beam P ~a oiker

eik‘r

Ak=K -k

n(r): Electron number density atr



The periodic function of electron number density n(r) can be
expressed as

-n(r):z ne exp(iG - r)
C
the scattering amplitudé
F=2, [dVngexpli(G— Ak) * r]
G

When the scattering vector AK is equal to a particular reciprocal
lattice vector,

Ak=K-k  Ak=G

the argument of the exponential vanishes and F = Vng.



The diffraction conditionis K’ =k + G.

In elastic scattering k’> =k?, so the diffraction condition can
be written as

which is another statement of the Bragg condition.

nA=2d sin@ "




Ewald Construction

The Ewald construction. Given the
incident wave vector k, a sphere of
radius & 1s drawn about the point k.
Diffraction peaks corresponding to re-
ciprocal lattice vectors K will be ob-

served only if K gives a reciprocal lattice

point on the surface of the sphere. Such

a reciprocal lattice vector is indicated in .
the figure, together with the wave vector

k’ of the Bragg reflected ray.




Bragg Spectrometer

Bragg Spectrometer

Much of our knowledge about crystal structure and the structure of molecules as
complex as DNA in crystalline form comes from the use of x-rays i x-ray
diffraction studies. A basic mnstrument for such study 1s the Bragg spectrometer.
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Characteristic X-Rays

Characteristic X-Rays

Charactenistic x-rays are emitted from
heavy elements when their electrons
make transitions between the lower
atomic energy levels. The charactenstic
x-rays ermission which shown as two
sharp peaks m the illustration at left
Ka occur when vacancies are produced in

the n=1 or K-shell of the atom and
Characteristic electrons drop down from above to fill
- X-rays the gap. The z-rays produced by

transitions from the n=2 to n=1 levels are
X-rays froma  called K-alpha x-rays, and those for the
molybdenum  n=3.>{ transiton are called K-beta
target at 35 kV  y.rays.

Brehmssirahlung
continuum e
S Transitions to the n=2 or L-shell are
designated as L x-rays (n=3->2 13
02 04 06 .08 .10 .12 L-alpha, n=4->2 15 L-beta, etc. ). The




Wavelengths for X-Radiation

Copper Bearden | Holzer et al. Cobalt Bearden | Holzer et al.
Anodes (1967) (1997) Anodes | (1967) (1997)

Cu Kot 1.54056A | 1.540598 A Co Kol | 1.788965A | 1.789010 A
Cu Koi2 1.54439A | 1.544426 A CoKo2 |1.792850A | 1.792900 A
Cu Kp 1.39220A | 1.392250 A Co KB 1.62079A | 1.620830 A
Molybdenum Chromium

Anodes Anodes

Mo Kol 0.709300A | 0.709319 A Cr Ka1 2.28970A |2.289760 A
Mo Ko2 0.713590A | 0.713609 A CrKa2 |2.293606A | 2.293663 A
Mo KB 0.632288A | 0.632305 A CrKp 2.08487A |2.084920 A




Brehmsstrahlung X-Rays

Brehmsstrahlung X-Rays

X-ray Continuum Radiation
(Brehmsstrahlung)

Relative intensity

2 /'\‘ Accelerated

02 04 10 electron emits
Wavelength (nm) radiation

"Brehmsstrahlung” means "braking radiation" and 1s retamed from the onginal
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X-ray Diffractometer

Pecharsky and Zavalij (2003)

Animation showing the five motions possible with a four-circle kappa
goniometer. The rotations about each of the four angles ¢, x, w and 26
leave the crystal within the X-ray beam, but change the crystal
orientation. The detector (red box) can be slid closer or further away
from the crystal, allowing higher resolution data to be taken (if
closer) or better discernment of the Bragg peaks (if further away).

file:///Users/mac/Downloads/Kappa_goniometer animation.ogv.36
Op.webm
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X-ray Diffraction Rings from a Powder Sample
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X-ray diffraction patterns from
3 different forms of SiO,
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Electron number density n(r) is a periodic function of r

n(r +T) = n(r) T =wu,a, + ua, + uja,

In one dimension with a period of a in x, we expand
n(x) in Fourier series of sines and cosines:

n(x) =ny+ 2 [Cp cos(2mpx/a) + S, sin(2px/a) ]

p >()

In more compact form
n(x) =, n,, exp(i2mpx/a)
P

To ensure that n(x) is a real function, we

require x
nt,=n,



The extension of the Fourier analysis to periodic functions n(r) in three
dimensions is straightforward. We must find a set of vectors G such that

n.(r):z ng exp(iG - r)
G

is invariant under all crystal translations T that leave the crystal invariant.

ng=V," f “ dV n(r) exp(—iG * r)

Here V, is the volume of a cell of the crystal.



Fourier Analysis of the Basis

When the diffraction condition, AK = G, is satisfied, the
scattering amplitude for a crystal of N cells may be written as

Fco =N dV n(r) exp(—iG * r) = NS¢
cell

The quantity Sg is called the structure factor, with r = 0 at one corner.
y

If I is the vector to the center of
atom j, then the function n(r - r;)

defines the contribution of that

atom to the electron concentration

atr. The total electron density is

3

n(r) = 2 fnj(r e rj)

j—1




The structure factor S; may be written as
S¢ = ; [ dV nr = 1;) exp(—iG * 1)
= 2 exp(—iG - 1;) [ dV ny(p) exp(—iG * p)
where p = r — r;. We now define the atomic form factor as
fy= I dVnp) exp(~iG -p) .

then
Sec = 2)3 exp(—iG - r]-)
j

SlnCe G- I} - (ﬁl.bl + 'Uzbg + ‘ng;}) * (Ijal + yjag + Zj33)
= 2m(v; + vy, +057) , so

Sc(v10g03) = D, fy expl =i2m(vyx; + voy; + v57;)]
J



Structure Factor of the bcc Lattice

The bee basis referred to the cubic cell has identical atoms at

X;=y,=2;=0,and x, =y, =z,= Y. Thus,

S(UJUQU:]) :f{l -+ E;‘Xp[“i"-’?T(U] + Us + U.‘E)]}
and
S=0 when v, + v, + vy = odd integer ;
S = 2f when v, + vy, + vy = even integer

Metallic sodium has a bee structure. Its diffraction pattern
does not contain lines such as (100), ( 300), (111) or (221), but
lines such as (200), (110) and (222) will be present.



Figure 13 This plane intercepts
the a,, a,, a; axes at 3a,, 2a,. 2a,
The reciprocals of these numbers
are 3,3, The smallest three inte-
gers having the same ratio are 2, 3,
3, and thus the indices of the plane

are (233)

Index System for Crystal Planes

(100) (110) (111)

/

(200) (100)

Figure 14 Indices of important planes in a cubic crystal The plane (200) is parallel to (100) and
to (100)

Find the intercepts on the axes
in terms of the lattice constants
a,, 0,, d;. The axes may be
those of a primitive or
nonprimitive cell.

Take the reciprocals of these
numbers and then reduce to
three integers having the
same ratio, usually the
smallest three integers. The
result, enclosed in
parentheses (hkl), is called

the index of the plane.
35



Diffraction from the planes of a bcc Lattice

S

bee

\1r Phase
difference 27

/

\\
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———o 2nd pIan

l<—-—--‘ S ——-——-)»-I

3rd plane

Figure 16 Explanation of the absence of a (100) reflection from a body-centered cubic lattice.
The phase difference between successive planes is 7, so that the reflected amplitude from two

adjacent planesis 1 + e =1-1=0



Structure Factor of the fcc Lattice

The basis of the fcc structure referred to the cubic cell has
1 11

identical atoms at 000; 0%%, l05, 550. Thus

S(v1w5v5) = fl1 + exp[—im(vs + v5)] + exp[—im(v; + vy)]
+ exp[—im(v, + vy)]]

If all indices are even integers, S = 4f; similarly if all indices are
odd integers. But if only one of the integers is even, two of the
exponents will be odd multiples of —ir and S will vanish. If only
one of the integers is odd, the same argument applies and S
will also vanish. Thus in the fcc lattice no reflections can occur
for which the indices are partly even and partly odd.



Missing Diffraction Orders

« The missing orders follow rules depending on which type of lattice it is:

Simple cubic (sc):
any (hkl)

Body-centred cubic (bcc):
h+k+l = even

Face-centred cubic (fcc):
h, k & | all odd or all even

Missing orders make it easier to
identify a particular crystal
structure — i.e. it is helpful!

Lattice Type

Miller indices

SC

bcc

fcc

100

110

111

200

210

211

220

310

311

<[ =<|=<|=<|=<|=<|=<]|=<]|=<

z|l<|<|=<|z|<|z]|<]|=z

<|Z|<X|Z2|Z|<X|<X]|Z2|Z2




Atomic Form Factor

fi =/ dV n(r) exp(—iG 1)

[f the electron distribution is spherically symmetric about the
origin, then

)3 =97 [ dr r d(cos &) ny(r) exp(—iGr cos )

i eiGr . e—iGr"
= 2 | dri n r
f (r) - z'Gr ’

“- sm Gr*;-'-"
fi= 471' f d? i (; )r : Gr‘

If the same total electron dens1ty were concentxated at r = 0,

fi =4 [dr 1":.’,-(1")1'2 = 7 : the number of atomic electrons.



Problems

1. Interplanar separation. Consider a plane hikl in a crystal lattice. (a) Prove that the
reciprocal lattice vector G = hb, + kb, + [b; is perpendicular to this plane. (b)
Prove that the distance between two adjacent parallel planes of the lattice is
d(hkl) = 271/|G/|. (c) Show for a simple cubic lattice that d* = a*/(h* + k* + %),

2. Structure factor of diamond. The crystal structure of diamond is described in
Chapter 1. The basis consists of eight atoms if the cell is taken as the conventional
cube. (a) Find the structure factor S of this basis. (b) Find the zeros of S and show
that the allowed reflections of the diamond structure satisty v, + vy + vy = 4n,
where all indices are even and n is any integer, or else all indices are odd.

(Notice that h, k, [ may be written for v}, v,, v4 and this is often done.)

3. Show that the reciprocal lattice of a two-dimensional lattice can be represented by rods.
Discuss the Ewald construction for diffraction from a two-dimensional lattice and
determine the diffracted beam for a particular orientation and magnitude of k,. Why does
one observe a diffraction pattern of electrons from a surface for all values and
orientations of k, above a critical value? Calculate the critical energy at which the first
diffracted beam appears, when the electrons are incident perpendicular to a (100)
surface of a Cu crystal.
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