
Reciprocal Lattice and X-ray Diffraction

A diffraction pattern of a crystal is a map of the reciprocal 
lattice of the crystal.



Reciprocal Lattice

• The reciprocal lattice is defined as the set of all wave 
vectors K’s that yield plane waves with the periodicity of a 
given Bravais lattice.

• Let R denotes a Bravais lattice point; consider a plane wave 
exp(ik.r). This will have the periodicity of the lattice if the 
wave vector k=G, such that 

    exp(iG.(r+R)=exp(iG.r)

 for any r and all R Bravais lattice.

• Thus the reciprocal lattice vectors G must satisfy

        exp(iG.R)=1



In one dimension with a period of a in x, we have 

expand n(x) in Fourier series of sines and cosines:

In more compact form

To ensure that n(x) is a real function, we 
require 

Reciprocal Lattice Vector in 1D

n(x+a) = n(x)



Fourier coefficient:

Since

If p’ = p,  np = a-1np’ a = np 

We say that 2𝜋p/a is a point in the reciprocal lattice or Fourier space 
of the crystal. The reciprocal lattice points tell us the allowed terms 
in the Fourier series, which is consistent with the periodicity of the 
crystal.



Reciprocal Lattice Vectors in 3D

Here



Brillouin Zone

A Brillouin zone is defined as a Wigner-Seitz cell in the 
reciprocal lattice.



The central cell in the reciprocal lattice is of special 
importance in the theory of solids, and we call it the first 
Brillouin zone. The first Brillouin zone is the smallest volume 
entirely enclosed by planes that are the perpendicular bi- 
sectors of the reciprocal lattice vectors drawn from the origin. 

Brillouin Zone in 1D and 2D



All Brillouin Zones: Square Lattice
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Reciprocal Lattice to bcc Lattice

An fcc lattice is the reciprocal lattice of the bcc lattice. 



Reciprocal Lattice to fcc Lattice

A bcc lattice is the reciprocal lattice of the fcc lattice. 



First Brillouin Zone for fcc



First Brillouin Zone for bcc



Wavelength vs particle energy

λ (Å) = [150/E (eV)]1/2 for electron

λ (Å) = 12.4/E (keV) for photon

λ (Å) = [82/E (meV)]1/2 for neutron

λ = h/P = h/(2mE)1/2de Broglie wavelength



X-ray Diffraction

/hcE =

Typical interatomic distances in solid are of the order of 
an angstrom. Thus the typical wavelength of an 
electromagnetic probe of such distances must be of the 
order of an angstrom.  

Upon substituting this value for the wavelength into the 
energy equation, we find that E is of the order of 12 
thousand eV, which is a typical X-ray energy.  Thus X-ray 
diffraction of crystals is a standard probe.

λ (Å) = 12.4/E (keV)



Bragg Diffraction: Bragg’s Law

nλ = 2dhkl sinθhkl

hkl

Planes with Miller index (hkl) has the interplane distance dhkl:

dhkl = a/(h2+k2+l2)1/2



Condition for Interferences



Diffraction Conditions

Theorem: The set of reciprocal lattice vectors Gs determines 
the possible x-ray reflections.



Scattering Amplitude of X-Ray Diffraction

△k = k’ - k

n(r): Electron number density at r 



The periodic function of electron number density n(r) can be 
expressed as

△k = k’ - k

When the scattering vector ∆k is equal to a particular reciprocal 
lattice vector, 



k’ = k + G.The diffraction condition is

In elastic scattering k’2 =k2, so the diffraction condition can 
be written as

or

which is another statement of the Bragg condition.



Ewald Construction



Bragg Spectrometer



Characteristic X-Rays



Wavelengths for X-Radiation



Brehmsstrahlung X-Rays



Bragg Peaks

Each plane reflects ~0.01% 



X-ray Diffractometer

Animation showing the five motions possible with a four-circle kappa 
goniometer. The rotations about each of the four angles φ, κ, ω and 2θ
leave the crystal within the X-ray beam, but change the crystal 
orientation. The detector (red box) can be slid closer or further away 
from the crystal, allowing higher resolution data to be taken (if 
closer) or better discernment of the Bragg peaks (if further away).
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X-ray Diffraction Rings from a Powder Sample



X-ray diffraction patterns from 
3 different forms of SiO2



In one dimension with a period of a in x, we expand 
n(x) in Fourier series of sines and cosines:

Electron number density n(r) is a periodic function of r 

In more compact form

To ensure that n(x) is a real function, we 
require 





Fourier Analysis of the Basis

When the diffraction condition, △k = G, is satisfied, the 
scattering amplitude for a crystal of N cells may be written as
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If rj is the vector to the center of 

atom j, then the function nj(r – rj) 

defines the contribution of that 

atom to the electron concentration 

at r. The total electron density is
RN

r

rj



The structure factor SG may be written as

then

Since

so



Structure Factor of the bcc Lattice

x1 = y1 = z1 = 0, and x2 = y2 = z2 = ½.  Thus, 

Its diffraction pattern

does not contain lines such as (100), ( 300), (111) or (221), but

lines such as (200), (110) and (222) will be present.

and



35

Index System for Crystal Planes

• Find the intercepts on the axes 

in terms of the lattice constants 

a1, a2, a3. The axes may be 

those of a primitive or 

nonprimitive cell. 

• Take the reciprocals of these 

numbers and then reduce to 

three integers having the 

same ratio, usually the 

smallest three integers. The 

result, enclosed in 

parentheses (hkl), is called 

the index of the plane. 



Diffraction from the planes of a bcc Lattice



Structure Factor of the fcc Lattice

The basis of the fcc structure referred to the cubic cell has 

identical atoms                                           Thus

If all indices are even integers, S = 4f; similarly if all indices are 

odd integers. But if only one of the integers is even, two of the 

exponents will be odd multiples of −i𝜋 and S will vanish. If only 

one of the integers is odd, the same argument applies and S 

will also vanish. Thus in the fcc lattice no reflections can occur 

for which the indices are partly even and partly odd. 



Missing Diffraction Orders

Lattice Type

Miller indices sc bcc fcc

1 0 0 Y N N

1 1 0 Y Y N

1 1 1 Y N Y

2 0 0 Y Y Y

2 1 0 Y N N

2 1 1 Y Y N

2 2 0 Y Y Y

3 1 0 Y Y N

3 1 1 Y N Y

Simple cubic (sc):

any (hkl)

Body-centred cubic (bcc):

h+k+l = even

Face-centred cubic (fcc):

h, k & l all odd or all even



Atomic Form Factor

If the electron distribution is spherically symmetric about the 
origin, then

･

:



Problems

2.

.

3.  Show that the reciprocal lattice of a two-dimensional lattice can be represented by rods. 

Discuss the Ewald construction for diffraction from a two-dimensional lattice and 

determine the diffracted beam for a particular orientation and magnitude of k0. Why does 

one observe a diffraction pattern of electrons from a surface for all values and 

orientations of k0 above a critical value? Calculate the critical energy at which the first 

diffracted beam appears, when the electrons are incident perpendicular to a (100) 

surface of a Cu crystal. 
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